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ABSTRACT

Fisher matrix techniques are used widely in astronomy (and, we are told, in

many other fields) to forecast the precision of future experiments while they are

still in the design phase. Although the mathematics of the formalism is widely

reproduced (DETF report, Wikipedia, etc), it is difficult to find simple examples

to help the beginner. This document works through a few simple examples to

emphasize the concepts.

1. Hot Dogs and Buns

Consider a universe with two kinds of particles: hot dogs and buns.1 Our model of

physics is that hot dogs and buns are generally produced in pairs, but that hot dogs occa-

sionally are produced alone in a different process. We want to know the pair production rate

and the hot-dog-only production rate. The only measurements we can do are counting hot

dogs and buns in a given volume of space.2

In this example, there are two observables: number of hot dogs nh and number of buns

nb. Each observable has some measurement uncertainty, σh and σb respectively. There are

two model parameters: pair production rate (call it α) and hot-dog-only rate (β). We can

write down the model as:

nh = α + β

nb = α

assuming that we survey a unit volume of space and a unit time.

1I am, of course, playing off Paul Krugman’s famous toy model economy with two kinds of products: hot

dogs and buns.

2If the word rate is bothersome, imagine that we can first clear the volume of any particles, and then

count at some unit time later.
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The whole point of the Fisher matrix formalism is to predict how well the experiment

will be able to constrain the model parameters, before doing the experiment and in fact

without even simulating the experiment in any detail. We can then forecast the results of

different experiments3 and look at tradeoffs such as precision versus cost. In other words,

we can engage in experimental design.

This example is so simple that we can use our intuition to predict what the Fisher matrix

will predict. When we get the data, we will probably infer the pair-production rate from

the number of observed buns, and infer the hot-dog-only rate by subtracting the number of

observed buns from the number of observed hot dogs. If our experiment happens to count

too many4 buns, it would not only boost our estimate of the pair production rate, but would

also depress our estimate of the hot-dog-only rate. So there is a covariance between our

estimates of the two parameters. We can also see that the variance in our estimate of the

pair-production rate will be equal to (apart from some scaling factors like the total volume

surveyed) the variance in bun counts, but the variance in our estimate of the hot-dog-only

rate will be equal to (again neglecting the same scaling factors) the sum of the variances of

the bun and hot dog counts (because of simple propagation of errors).

The beauty of the Fisher matrix approach is that there is a simple prescription for setting

up the Fisher matrix knowing only your model and your measurement uncertainties; and that

under certain standard assumptions, the Fisher matrix is the inverse of the covariance matrix.

So all you have to do is set up the Fisher matrix and then invert it to obtain the covariance

matrix (that is, the uncertainties on your model parameters). You do not even have to decide

how you would analyze the data! Of course, you could in fact analyze the data in a stupid

way and end up with more uncertainty in your model parameters; the inverse of the Fisher

matrix is the best you can possibly do given the information content of your experiment.

Be aware that there are many factors (apart from stupidity) that could prevent you from

reaching this limit!

Here’s the prescription for the elements of the Fisher matrix F . For N model parameters

p1, p2, ...pN , F is an N × N symmetric matrix. Each element involves a sum over the

observables. Let there be B observables f1, f2...fB, each one related to the model parameters

3In this simplified example, different experiments could only mean larger or smaller surveys, which would

change the size of the measurement errors. But we will soon come to a more interesting example.

4By this I mean that the volume surveyed randomly happens to contain more buns than the universal

average.
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by some equation fb = fb(p1, p2...pN). Then the elements of the Fisher matrix are

Fij =
∑
b

1

σ2
b

∂fb
∂pi

∂fb
∂pj

(This assumes Gaussian errors on each observable, characterized by σb; later we will see the

more general expression but this is a concrete example to start with.) In this case, identifying

α as p1, β as p2, nh as f1 and nb as f2, we find that5

F =

[
1
σ2
h

+ 1
σ2
b

1
σ2
h

1
σ2
h

1
σ2
h

]

Inverting the 2x2 matrix yields the covariance matrix[
σ2
b −σ2

b

−σ2
b σ2

b + σ2
h

]
much like we expected.6 This example is underwhelming because it was so simple, but even

in this case we have accomplished something. The simple approach to data analysis that

we sketched above would yield the same covariances; and we know the Fisher matrix result

is the best that can be achieved, so we can now be confident that our data analysis plan is

actually the best that can be done.

The full power is really evident when you consider cases with just a few more observables

and just a few more parameters. It would be extremely tedious to manually write out, say,

a 4x4 matrix (for four model parameters), each element of which is the sum of say 5 terms

(for 5 observables), and invert it. But doing it numerically is extremely easy; basically, a

few lines of code for taking the derivatives, wrapped inside three nested loops (over Fisher

matrix columns and rows and over observables), plus a call to a matrix library to do the

inversion. For that small amount of work, you can forecast the (maximum possible) efficacy

of an extremely complicated experiment!

2. Fitting a Line to Data

As a second example, consider fitting a straight line to some data: f = ax+ b. Imagine

that you can afford to take data only two data points; at what values of x would you choose

5The student is definitely encouraged to work through this example in detail!

6The constraint on the pair production rate depends only on the bun measurement; the constraint on the

hot-dog-only rate depends on both measurements; and the off-diagonal term is negative because a fluctuation

in the hot dog rate induces an opposite-sign fluctuation in the pair-production rate.
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to measure? Intuitively, we would say as far apart as possible, to obtain the best constraint

on the slope. With the Fisher matrix, we can make this more quantitative. (Again, note

that the Fisher information matrix approach does not tell you how to fit a line, or in general

how to analyze your data.)

In this case, our two observables are not qualitatively different, like hot dogs and buns.

They are simply measuring the same kind of thing at two different values of x. But they can

nonetheless be considered two different observables united by a common model: f1 = ax1 +b

and f2 = ax2 + b. The Fisher matrix is then7

F =

[
x21
σ2
1

+
x22
σ2
2

x1
σ2
1

+ x2
σ2
2

x1
σ2
1

+ x2
σ2
2

1
σ2
1

+ 1
σ2
2

]

Inverting this and simplifying with some slightly tedious algebra, we obtain the covari-

ance matrix
1

(x1 − x2)2

[
σ2
1 + σ2

2 −x1σ2
2 − x2σ2

1

−x1σ2
2 − x2σ2

1 x21σ
2
2 + x22σ

2
1

]

In other words, the variance on the slope is
σ2
1+σ

2
2

(x1−x2)2 , which makes perfect sense because

it’s the variance in y2−y1
x2−x1 . The other elements are somewhat more complicated, such that you

would not have guessed them without grinding through the least-squares fitting formulae.

In fact, we can gain new (at least to me) insight by looking at the covariance between slope

and intercept: because the numerator contains odd powers of x, we can make it vanish!

Specifically, if we choose x1
x2

= −σ2
1

σ2
2
, we completely erase the covariance between slope and

intercept.8 If this were an important consideration for your experiment, you’d be glad for

the insight.

More commonly, though, we’d have more than two data points. If we can afford a third,

should we put it in the middle or make it as extreme as possible as well? Answering this

question analytically would be extremely tedious, so let’s write a quick Python script to do

it for us:

#!/usr/bin/python

7Again, the student is strongly encouraged to work this through!

8The covariance matrix can also be diagonalized without changing x1 or x2, by rewriting f as a function

of x − x0 and carefully choosing x0; in other words, by generalizing the concept of the “intercept” of the

function. Thanks to Zhilei Xu and Duncan Watts for pointing this out.
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import numpy

xvals = (-1,1)

sigmavals = (0.1,0.1)

npar = 2

F = numpy.zeros([npar,npar])

for x,sigma in zip(xvals,sigmavals):

for i in range(npar):

if i==0:

dfdpi = x

else:

dfdpi = 1

for j in range(npar):

if j==0:

dfdpj = x

else:

dfdpj = 1

F[i,j] += sigma**-2*dfdpi*dfdpj

print numpy.mat(F).I # invert the matrix

Here xvals is the list of x positions at which you will measure, and sigma is the list of

uncertainties of those measurements. We run it first with just two data points to confirm

the analytic results. With the above values, the output is:

[[ 0.005 0. ]

[ 0. 0.005]]

which confirms the results (or confirms the script, depending on how you look at it). To

further test the script, add a third point at x = 0; this should not improve the slope

constraint, but should help the intercept. The result is:

[[ 0.005 0. ]

[ 0. 0.00333333]]

This confirms that we are correctly interpreting the order of the matrix elements that numpy
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spits out. Finally, move the third point to x = 1 (imagine that this is at the extreme end of

where you can measure). The result is:

[[ 0.00375 -0.00125]

[-0.00125 0.00375]]

This helped constrain the slope and the intercept, at the cost of some covariance.

Exercise: (a) Write the Fisher matrix for fitting a line to one data point and attempt

to invert it to obtain the covariance matrix. What happens and why? Explain why infinite

covariance does not necessarily imply zero information. (b) If we now take a second data

point at the same value of x, compare what happens to the information and the covariance.

3. Fiducial models

In the above example, we didn’t have to specify the expected value of the slope or

intercept, even roughly. In many (most?) situations, the derivatives you put into F do

depend on the model parameters. For example, consider y = exp(−x/x0):

∂y

∂x0
=

x

x20
exp(−x/x0).

Conceptually, it makes sense that x0 would figure into the precision of your experimental

constraints; after all, the larger the exponential scale length, the less able you are to detect

any decline if you are sampling a fixed range of x.

Is it circular reasoning to have to assume a value of your model parameters? No, as long

as you are careful. Assume your best-guess value of x0 and call that your fiducial model.

Your Fisher matrix is then valid for models near the fiducial model. Of course, you should

check that the Fisher matrix does not change too much if you change your fiducial model to

some other plausible model! The whole Fisher matrix formalism is based on the assumption

that only models near the correct model are considered. You should always be aware of

the implications of these assumptions, and refer to some of the references cited for more

complete explanations and definitions of “near.”

4. Priors

A prior represents your knowledge of the model parameters prior to the experiment.

In the context of forecasting constraints using the Fisher matrix, it represents how precise
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your prior knowledge is. This is easy to visualize in terms of the covariance matrix. In the

line-fitting example, imagine that by some revealed knowledge (from a previously published

experiment, perhaps, or because of some theoretical consideration), you already know the

slope to within σslope,prior and the intercept to within σintercept,prior. You could then represent

your prior knowledge with the covariance matrix

[
σ2
slope,prior 0

0 σ2
intercept,prior

]
(again, we are assuming Gaussian uncertainties). You can invert this into a Fisher matrix[

σ−2
slope,prior 0

0 σ−2
intercept,prior

]

and add it to your experiment’s Fisher matrix. This represents the total information available

(the full name of the Fisher matrix is the Fisher information matrix, after all; it is the inverse

of the variance). Now invert that total matrix into a new covariance matrix to yield a forecast

of the covariances you will have after doing your experiment.

That’s a conceptual view. In practice, you may have a prior on only one of the parame-

ters, and you cannot represent this with an invertible matrix. So in practice people just add

σ−2
prior to the appropriate diagonal element of F .

If you know a parameter very, very well, you will get an extremely large number in

that Fisher matrix element. In the limit where you want to fix a parameter completely,

you may want to just remove it (i.e., remove the corresponding column and row) from the

Fisher matrix rather than put a ginormous number there, to protect yourself from numerical

instabilities.

5. Nuisance Parameters and Marginalizing

In the line-fitting example, what if you recorded a bunch of data and derived a fit, but

are interested only in the slope and not at all in the intercept? Then the intercept can be

considered a nuisance parameter, and you would like to integrate or marginalize over possible

values of this parameter when placing confidence limits on the slope.

At least, that’s the way of viewing it when you’re actually analyzing your data. In terms

of forecasting, the Fisher matrix makes this trivial: the values in F−1 are the marginalized

variances.
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More commonly, nuisance parameters are those which describe the experiment and

not the scientific model. For example, you may have a calibration in your measurement

machinery which is uncertain by 10%. You should explicitly write a variable calibration

factor into the model and add expand the Fisher matrix to include this variable, taking all

the necessary derivatives. Then, represent the 10% prior on the calibration parameter by

adding to the appropriate diagonal element of the Fisher matrix before inverting.

In some cases, you may find that the Fisher matrix forecasts a tight constraint on your

calibration parameter even without specifying a prior on it. If so, you have stumbled into

a self-calibration regime. The parameter space and the experiment might work together so

that you can use the data to simultaneously solve for model and calibration parameters,

without incurring much extra uncertainty on the model parameters.

Exercise: Return to the exercise in which we forecast constraints provided by fitting

a line to one data point (or multiple data points over a very limited range of the indepen-

dent variable). Imagine you have prior information about the intercept from some other

experiment or from theory. Add this information to the Fisher matrix and show that the

covariance matrix no longer blows up. Interpret this result.

Exercise: (a) A typical galaxy model says that the intensity as a function of radius

is I(r) = I0 exp(− r
r0

). At each value of r there is some uncertainty in your measurement

of I; let us call this σI . Find the covariance matrix if you measure I at three values of

r: 0, r0, and 2r0 (you may want to write a script to do this). (b) In real images there is

always background light so you fit a model I(r) = I0 exp(− r
r0

) + b where b is a uniform

background. Find the covariance matrix for estimating all three parameters from the data.

(c) For physical reasons, the amount of background light cannot be arbitrarily large, nor can

it be less than zero. Put some prior on b and see how that affects your constraint on I0 and

r0. Note that assigning this prior is a bit of an art and is quite distinct from assigning σI ,

which should be known rigorously based on the properties of your camera.

6. Multiple Experiments

What if we have multiple experiments that constrain a model? The Fisher matrix

makes it easy to forecast the precision of a joint analysis: just add the Fisher matrices of

the experiments, and invert the summed matrix. To see this, just consider the different

experiments as different observables; we were already summing over the B observables of

a given experiment to produce each element of F , so now we simply sum over the B1

observables of the first experiment, the B2 observables of the second experiment, and so on.
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Note that the different experiments’ observables do not at all have to depend on the model

in the same way! The ∂fb
∂pi

terms represent each particular observable’s relationship to the

model.

If you are combining multiple experiments and each experiment has multiple nuisance

parameters, F can get very large (in terms of number of elements N2
param, not the size of the

elements). If you need to reduce the size of F to invert it, there may be a workaround. If the

nuisance parameters of each experiment are uncorrelated, you can find the covariance matrix

for the first experiment, then remove the rows and columns corresponding to the nuisance

parameters, and invert to find the “marginalized Fisher matrix” for that experiment. You

then sum the marginalized Fisher matrices for all the experiments and invert to get the final

covariance matrix. Obviously you can’t take this shortcut for nuisance parameters which are

correlated from experiment to experiment. We tend to assume that these correlations don’t

exist and that therefore we can take the shortcut of marginalizing first, but think carefully

when you do this. Don’t just do it by default.

7. Still to address

For now, see the references below for more information on these topics: nongaussian un-

certainties; transformation of variables; factors (apart from stupidity) that could prevent you

from reaching the Cramer-Rao limit; contrast the FIM approach with simulations visually

showing how the former must always give ellipses in parameter space.

8. Further reading, more rigorous proofs, etc

Astronomy: The Dark Energy Task Force report (http://arxiv.org/ftp/astro-ph/

papers/0609/0609591.pdf) has a nice summary of the math behind Fisher matrix analysis

starting on p. 94. The Findings of the Joint Dark Energy Mission Figure of Merit Science

Working Group (http://arxiv.org/PS_cache/arxiv/pdf/0901/0901.0721v1.pdf, start-

ing on p. 4) repeats much of this but also adds some cautionary notes on numerical insta-

bilities to watch for when doing the matrix operations.

Fisher matrix analysis appears to have been introduced into astronomy in a 1997 paper

by Tegmark et al.

Dan Coe’s Fisher Matrices and Confidence Ellipses: A Quick-Start Guide and Soft-

ware (http://arxiv.org/PS_cache/arxiv/pdf/0906/0906.4123v1.pdf) helps you con-

vert Fisher matrices to confidence contours and includes links to relevant software packages.

http://arxiv.org/ftp/astro-ph/papers/0609/0609591.pdf
http://arxiv.org/ftp/astro-ph/papers/0609/0609591.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0901/0901.0721v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0906/0906.4123v1.pdf
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Emergence: This paper is really interesting: https://www.sciencemag.org/content/

342/6158/604?related-urls=yes&legid=sci;342/6158/604.

Other: It would be nice to have some other suggestions for further reading for other

specific fields/applications. Suggestions, anyone?
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